Using Time Deformation to Filter Nonstationary Time Series with Multiple Time-Frequency Structures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Time Deformation to Filter Nonstationary Time Series with Multiple Time-Frequency Structures

For nonstationary time series consisting ofmultiple time-varying frequency (TVF) componentswhere the frequency of components overlaps in time, classical linear filters fail to extract components. The G-filter based on time deformation has been developed to extract components of multicomponent G-stationary processes. In this paper, we explore the wide application of the G-filter for filtering di...

متن کامل

Data Mining of Multiple Nonstationary Time Series

A data mining method for synthesizing multiple time series is presented. Based on a single time series algorithm, the method embeds multiple time series into a phase space. The reconstructed state space allows temporal pattern extraction and local model development. Using an a priori data mining objective, an optimal local model is chosen for short-term forecasting. For the same sampling period...

متن کامل

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

Nonlinear cointegrating regressions with nonstationary time series

This paper develops an asymptotic theory for a non-linear parametric co-integrating regression model. We establish a general framework for weak consistency that is easy to apply for various non-stationary time series, including partial sum of linear process and Harris recurrent Markov chain. We provide a limit distribution for the nonlinear least square estimator which significantly extends the...

متن کامل

Nonstationary Data Analysis by Time Deformation

In this paper we discuss methodology for analyzing non-stationary time series whose periodic nature changes approximately linearly with time. We make use of the M-stationary process to describe such data sets, and in particular we use the discrete Euler(p) model to obtain forecasts and estimate the spectral characteristics. We discuss the use of the M-spectrum for displaying linear time-varying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Probability and Statistics

سال: 2013

ISSN: 1687-952X,1687-9538

DOI: 10.1155/2013/569597